Improving Robustness and Flexibility of Concept Taxonomy Learning from Text

نویسندگان

  • Fabio Leuzzi
  • Stefano Ferilli
  • Fulvio Rotella
چکیده

The spread and abundance of electronic documents requires automatic techniques for extracting useful information from the text they contain. The availability of conceptual taxonomies can be of great help, but manually building them is a complex and costly task. Building on previous work, we propose a technique to automatically extract conceptual graphs from text and reason with them. Since automated learning of taxonomies needs to be robust with respect to missing or partial knowledge and flexible with respect to noise, this work proposes a way to deal with these problems. The case of poor data/sparse concepts is tackled by finding generalizations among disjoint pieces of knowledge. Noise is handled by introducing soft relationships among concepts rather than hard ones, and applying a probabilistic inferential setting. In particular, we propose to reason on the extracted graph using different kinds of relationships among concepts, where each arc/relationship is associated to a number that represents its likelihood among all possible worlds, and to face the problem of sparse knowledge by using generalizations among distant concepts as bridges between disjoint portions of knowledge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Applicability of Oxford's Taxonomy of Learner Strategies to Translation Tasks

During the last three decades, especially 1980's, language learning specialists have been busy  discovering the nature of language learning strategies, describing them, and formulating their relationships with other language learning factors. In line with these studies, the field of translation studies has undergone a complete revolution in terms of its perspective toward its research prioritie...

متن کامل

Comparing Conceptual, Divise and Agglomerative Clustering for Learning Taxonomies from Text

The application of clustering methods for automatic taxonomy construction from text requires knowledge about the tradeoff between, (i), their effectiveness (quality of result), (ii), efficiency (run-time behaviour), and, (iii), traceability of the taxonomy construction by the ontology engineer. In this line, we present an original conceptual clustering method based on Formal Concept Analysis fo...

متن کامل

Learning Taxonomy for Text Segmentation by Formal Concept Analysis

In this paper the problems of deriving a taxonomy from a text and concept-oriented text segmentation are approached. Formal Concept Analysis (FCA) method is applied to solve both of these linguistic problems. The proposed segmentation method offers a conceptual view for text segmentation, using a context-driven clustering of sentences. The Concept-oriented Clustering Segmentation algorithm (COC...

متن کامل

Comparing Conceptual, Divisive and Agglomerative Clustering for Learning Taxonomies from Text

The application of clustering methods for automatic taxonomy construction from text requires knowledge about the tradeoff between, (i), their effectiveness (quality of result), (ii), efficiency (run-time behaviour), and, (iii), traceability of the taxonomy construction by the ontology engineer. In this line, we present an original conceptual clustering method based on Formal Concept Analysis fo...

متن کامل

Domain taxonomy learning from text: The subsumption method versus hierarchical clustering

This paper proposes a framework to automatically construct taxonomies from a corpus of text documents. This framework first extracts terms from documents using a part-of-speech parser. These terms are then filtered using domain pertinence, domain consensus, lexical cohesion, and structural relevance. The remaining terms represent concepts in the taxonomy. These concepts are arranged in a hierar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012